Resin is a renewable non-timber forest product that is used as a raw material in a wide range of goods, thereby holding significant socioeconomic importance and relevance across multiple industrial sectors. This study aims to provide a comprehensive review of the main factors influencing natural resin production in Pinus stands, as well as to address the effects of these factors on tree growth dynamics and resin yield optimization. Among these factors, dendrometric characteristics, environmental conditions, and silvicultural practices, such as thinning, pruning, and prescribed burning, are particularly relevant. However, the scientific literature presents conflicting results regarding the influence of these factors on resin yield, as well as the impacts of resin tapping on tree growth and wood quality. These divergences highlight the complexity of the process and reinforce the need for further studies to clarify the interactions between silvicultural practices in Pinus stands and resin production. Understanding these practices is essential for the development and implementation of efficient silvicultural models aimed at optimizing resin tapping that are properly tailored to the specific conditions of each site. In this context, the development of management models that integrate both timber and resin production is fundamental for simulating management scenarios, generating yield forecasts, and supporting decision-making processes. It is worth noting that management models focused on maximizing resin production may differ from conventional approaches intended for pulpwood or sawtimber production. Nevertheless, integrating resin tapping with timber harvesting holds significant potential to increase the profitability of forest operations.
Resin Production in Pinus: A Review of the Relevant Influencing Factors and Silvicultural Practices
pine; non-timber forest product; resin tapping